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Preface 
 
This paper represents a compilation of my understanding of the physics of the flute so 
far, and is currently an evolving document.  It is written from the perspective of the 
Native American style flute with a fixed sound hole configuration and a limited 
second-octave range.  The treatment is appropriate for the penny whistle as well.  Most 
of the treatment is also consistent with mouth-blown flutes like the simple-system Irish 
flute or the shakuhachi, but no effort is made to account for embouchure variations. 
 
The original works I read on the physics of flutes were written by Lew Paxton Price in 
a pair of books titled Secrets of the Flute: The Physics, Math, and Design of Non-
Mechanical Folk Flutes and More Secrets of the Flute: More of the Physics, Math, and 
Design of Non-Mechanical Folk Flutes, and I owe a great deal to the author for 
providing me with that jump start.  His work is probably the most referenced 
explanation in the NAF community, so I have made an effort to be consistent with his 
notation and descriptions whenever I can.  The balance of the notation style is intended 
to follow that of Nederveen. 
 
Price’s books do well in the first octave, but I was looking for some quantitative 
explanations of the physics in the second register.  So I turned to Arthur Benede.  His 
writings gave excellent qualitative explanations of such things as perturbation weight 
functions and tapered bores, but I still couldn’t find the mathematical construct for 
which I was searching.  I found it in Cornelis Nederveen’s book Acoustical Aspects of 
Woodwind Instruments.  The book is a thesis with a relatively detailed mathematical 
treatment of acoustic impedance that models well the effects of variables describing 
the various elements of flutes.  I began the process of digesting his work with the 
backdrop of Price and Benade looming ever present.   
 
Nederveen’s book does not have all the answers, but it does provide the tools I needed 
to find the ones I have found so far.  I had developed my own translations of how 
certain effects can be modeled, and noted that there was an unorganized pile of 
drawings, writings, analyses and computer code collecting on my hard drive.  So I 
began to organize those thoughts before I forgot the concepts, or where I put them.  
This document is the result, and represents more a notebook for my own purposes than 
an attempt to publish a book.  It is not nearly finished, but I will continue to add to this 
as I can find the time. 
 
I’ll add a note regarding my expectations of the theories.  The manufacturing process 
of a wooden flute has limits in accuracy, and the wood tends to change dimensions 
over time.  Furthermore, the number of interrelated variables in a flute is large, and 
any inaccuracies caused by approximating or omitting any physical effect are 
compounded.  As such, I DO NOT expect to be able to precisely model a complete 
flute. I DO expect, however, to model trends in changes to the intonation of a flute 
caused by changes in physical variables.  With an understanding of these trends, 
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changes in design can be guided with confidence, and the number of trial-and-error 
steps can be minimized. 
 
I am releasing it in its current form so that other interested folks can give my 
explanations a try if they are having trouble with other references.  I am attempting to 
make it as accessible as I can, so someone with an extensive background may be put 
off by some of my repetition of simpler concepts or long-winded explanations of 
concepts that may take some extra thought.  And I also expect that some of my 
explanations will be confusing to some (and some explanations may have erroneous 
information I have yet to catch!).  It is what it is, and I appreciate constructive 
suggestions.  This work has not been peer-reviewed and some ideas have yet to be 
fully tested, so I offer no “warrantee.”  I currently claim no copyright, so I encourage 
folks to use the material, but I do ask for the professional courtesy of a reference if you 
do use this work outside of your own flute making and designs. 
 
Enjoy the journey! 
 
 
Mike Prairie 
Maryland, USA 
January 2006 
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The Air Column 
 

A Vibrating Column of Air 
 
The flute can be thought of as a container that holds a column of air.  In its simplest 
form, it is a tube that is open at both ends.  The air is “compressible,” which means it 
has some springiness to it.  Another word for it is “elastic.”  And although it is as light 
as air (since it IS air…), it does weigh something so it will have some “inertia,” or 
resistance to change in motion.   
 
So if someone pushes on the air column at one end of the tube, what happens?  If the 
pushing is done slowly, the column will just slide out the other end.  If the push is 
sudden, the end of the column that was pushed will compress like a spring at first (the 
elastic property) and the column beyond the compressed part will not move right away 
(the inertial property).  But the coiled spring in the compressed part will push on the 
column beyond, and eventually the compressed part will work its way to the other end 
of the tube.  The same sort of thing will happen if the end of the column is pulled; the 
stretched part will move down the tube until it hits the end. 
 

 
 
The air itself does not flow all the way down the tube, but a pressure wave does.  At 
any point in the tube, a chunk of air is pushed or pulled by its neighbor behind it, and 
then it pushes or pulls the next chunk in the line in order to go back to its original 
position.  The wave is the disturbance to the air molecules that moved down the tube.  
It’s the same with “The Wave” football fans do at a stadium—the people don’t move, 
but the wave does. 
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If the end is pushed and pulled in a regular periodic cycle, the alternating compressions 
and elongations of the spring will travel down the tube and eventually cause the 
opposite end of the air column to move in and out of the end of the tube.  These 
alternating compressions and elongations of the air column are sound waves, and the 
speed at which the waves move down the tube is the speed of sound.  The speed of 
sound is  
 

ρ
Bvs =  

 
where B is called the “bulk modulus of elasticity,” which is a measure of the 
springiness of the air, and ρ is the density, which is a relative measure of the heaviness 
of the air.  Except for temperature, all the variables that define B and ρ for air are 
fairly constant.  Putting those numbers in to the equation leaves 
 

( )
⎥⎦
⎤

⎢⎣
⎡=

s
mKTvs 15.273

39.331  

 
where T(K) is the temperature in Kelvins, and the velocity is in meters per second.  
Converting to inches per second and using T in Fahrenheit, this becomes 
 

⎥⎦
⎤

⎢⎣
⎡+

=
s
inTvs 459.4

459.45.12600  .1 

 
At 68° F, that’s 13,500 inches per second.  Let’s say the tube is 13.5 inches long.  If 
the column is pushed in at on end, how long will it take for the wave to reach the other 
end?  If the speed of sound is 13,500 inches per second (…how convenient!), then a 
pressure wave will take 13.5/13500, or 1/1000 of a second to reach the other end. 
 
If the pushing and pulling was timed so that the “pull” happened just as the previous 
“push” hit the end of the tube, the ends of the air column would be moving out of the 
tube at both ends at the same time.  In our example, that would be if the column is 
pulled back 1/1000 of a second after it was pushed.  The air in the center of the tube 
would be pulled equally in both directions in that case, so it wouldn’t move at all.  
Then when the “push” came along, it would coincide with the last “pull” reaching the 
other end of the tube and pulling air into the end.  So then the ends of air column 
would be moving into the tube at both ends at the same time.  The air in the center of 

                                                           
1 This is the equation given by Lew Paxton Price in his “Secrets of the Flute” book.  If 
variables and physical constants from different sources are used, an equation with slightly 
different numbers results.  In the final analysis, however, the differences in pitch are within 
about 0.5 Hz.   This translates to less than 2 cents, which is below perceivable differences. 
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the tube would be squeezed equally in both directions in that case, so once again it 
wouldn’t move at all.  If this is repeated continuously (and the pushing and pulling is 
smooth and periodic), then an oscillation is set up that has a period of 2/1000=1/500 of 
a second, or a frequency of 500 cycles per second.  This would produce a sound at 500 
Hz. 
 
The figure below shows how the air column stretches and contracts during the 
vibration cycle.  The medium blue represents zero acoustic pressure, the lighter color 
occurs when the pressure drops because the column is stretched, and the dark color 
represents a compressed part of the column where the pressure is higher.  The things to 
note are that the ends of the column remain at atmospheric pressure (zero acoustic 
pressure) and move in and out of the end of the tube, and the center of the column 
experiences large pressure changes and remains stationary. 
 

 
 
As this cycle continues, the center of the air column would stay still at what is called a 
“flow node,” and the ends of the column would flow in and out in a mirror image.  The 
flow is at a maximum at the ends, and that is called a “flow antinode.” 
 
An interesting thing to point out is what is happening to the pressure in parts of the air 
column.  This will be important later on, but for now it is just “interesting.”  The ends 
of the air column are connected to the air around the tube, so the pressure at the ends is 
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fixed to the same pressure as the atmosphere.  So the acoustic pressure, which is the 
changes compared to the atmosphere2, is about zero here; this is called a “pressure 
node.”  In the middle of the tube, the air is getting squeezed and stretched at a 
maximum.  This is a “pressure antinode.” 
 
Looking at the same cycle from a slightly different perspective, if the column is 
thought of as a long spring, we can look at how the spring moves, or doesn’t move, 
throughout the cycle.  The picture below shows the spring as it contracts (turning red 
in the drawing) and expands (turning blue).  The rest position of the spring is shown 
with thinner black lines. 
 

 
 
Combining the contracted, rest, and compressed states of the spring in one drawing 
highlights the important concept about the motion of the air column—that the center 
stays fixed at one point, and the motion gradually increases toward the open ends of 
the tube where the ends of the column spring move freely.  This is shown below in the 
second drawing (the first is the column spring at rest).  The third drawing what 
happens during the second mode of oscillation, which will be discussed shortly, and 
the fourth picture shows mode 3. 
 
                                                           
2 The term “acoustic pressure” refers to the local changes in pressure that will propagate through 
the air as sound.  So whatever the total pressure is at an instant in time, we subtract the 
atmospheric pressure to get the acoustic pressure.  Even though the sound we hear from a flute is 
a result of radiating pressure waves, the positive and negative acoustic pressures at the ends are 
miniscule compared to what is going on at the center of the flute.  So the ends are effectively at 
zero acoustic pressure compared to the rest of the air column.  Unless otherwise stated, the use 
of the term “pressure” will refer to “acoustic pressure” for convenience. 
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Resonance 
 
One thing not mentioned yet is the fact that the air column coming out of the tube at 
the far end has some outward momentum, so it will not just stop when it reaches the 
original length.  It will continue moving a short distance and cause the column to 
stretch inside the tube.  That stretched air is like a stretched spring, and it will pull the 
end of the column back in.  On its way back into the tube the end of the air column 
will have inward momentum, and it will crash into and compress the air in the tube.  
This will form a new compression wave that will be sent as a reflected wave back into 
the bore in the opposite direction.   
 
The reflected wave will reach the end where the pulling and pushing is happening and 
try to push the end of the air column out of the tube.  If a push is happening at that 
time, then the push and the pressure wave will collide and the total energy left will be 
the difference between the push and the reflected wave.  This is called “destructive 
interference.”  If the wave arrives at the end just as a pull is happening, then the two 
are moving in the same direction, and they will add together and be even stronger.  
This is called “constructive interference.”  That combined wave will be reflected again, 
and will start down the tube again just as the next push comes along.  You could think 
of this like a child on a swing.  Think of the child as the pressure wave that keeps 
moving back and forth, and at one end mom or dad gives the child a little push just as 
the swing starts forward again.  This effect is called resonance, and it preferentially 
increases the energy of oscillations at certain frequencies, and destroys the oscillations 
at others.  This is the case with the air column in the tube.  The push-pull action at one 
end is the “generator,” and the tube is the “resonator,” and when the generator 
frequency matches the natural frequency of the resonator, they are in “resonance.” 
 

Higher Harmonics 
 
Resonance can happen at higher frequencies as well.  These are called “harmonics” 
because they are multiples of the lowest, fundamental frequency.  Here’s how it works 
with the pressure waves.  In the example above, our generator was working at 500 Hz, 
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and that resonated with the 13.5-inch tube because the reflected waves constructively 
interfered with the generated waves.  If we run the generator at 1000 Hz, we can 
launch a compression wave down the tube and launch an elongation wave just as the 
first compression wave gets half way down the tube.  As the first compression wave 
hits the end of the tube, we launch another one.  As the first one reflects and starts 
back up the tube, the generator launches another elongation wave.  The first 
compression wave makes it to the half-way point on its way back to the generator as 
another compression wave is generated.  Finally, the initial reflected wave hits the end 
of the tube as the generator is “pulling” another elongation wave.  Since the pull and 
the wave are moving in the same direction, they constructively interfere. 
 
The distance over which the sound wave travels during one full cycle of pushing and 
pulling by the generator is called the “wavelength.”  In the 500-Hz example, the wave 
traveled down and back up the tube before the next cycle started, so the wavelength 
was twice the length of the tube, or L2=λ .  In this case, the second cycle of the 
1000-Hz wave starts as the wave finishes the one-way trip down the bore, or L=λ .  
The general relationship between frequency and wavelength is 
 

λ
sv

f =   . 

 
The relationship between the frequency and the length of the tube is 
 

L
v

mf s

2
=   , 

 
where the factor “m” is introduced as the mode number, which is the number 
associated with the harmonic of the fundamental.  It is always an integer, and the 
fundamental pitch occurs for m=1.  The figure below shows how much the flow 
(green) and pressure (blue) vary along the length of the simple air column for mode 1 
in the upper drawing and mode 2 in the lower drawing.  The shape of the curves will 
be revisited in a later section. 
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Making “Cents” Out of Frequency 
 
When tuning a flute, the pitch is usually referenced to the Western chromatic scale 
with the A above middle C defined as 440 Hz.  The scale has 12 notes, or “semitones” 
distributed across each octave. A chart of these notes is below.   
 

 
 
Since the pitch is often given as referenced to the closest note plus or minus a fraction 
of the difference between that note and the next higher or lower note, respectively, a 
convenient way to describe that fraction is to use “cents.”  Each semitone step is 
divided into 100 parts, or cents.  The MIDI scale is divided this way as well, so using 
its mathematical definition is convenient in converting the frequency in Hz to a MIDI 
number that refers to a pitch and how flat or sharp it is.  The equation for the MIDI 
number given the frequency is 
 

( )
( ) 3
2ln
875.6ln12 −=

fMIDI   , 



- 13 - 

 
And to convert MIDI to frequency, use 
 

⎟
⎠
⎞

⎜
⎝
⎛ +

×= 12
3

2875.6
MIDI

f   . 
 
In the example above, the MIDI number for 500 Hz is 71.21.  That corresponds to B4 
plus 21 percent of the way from B to C, or B4 + 21 cents.  The 1000-Hz frequency is 
an octave higher, so it is B5 + 21 cents. 
 

Temperature effects 
 
One of the properties of the air column is that its properties change with temperature.  
There are also some minor effects due to humidity and altitude, but the temperature 
effect is far more dominant.  As the temperature rises, the density of the air drops, and 
this causes the velocity of sound to increase as was described earlier.  So when the 
elements of a flute are designed, the design must be done for a specific playing 
temperature.  If the flute is played or tuned by the flute maker at a different 
temperature, the difference can be accounted for by a simple shift in pitch.  The 
equation for frequency is given by 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

=

459.4
459.45.12600

2

2
T

L
m

v
L

mf s

 

 
Plotting this as a function of temperature, one can see how much of an offset in pitch is 
required if the playing temperature is different from the design temperature.  The chart 
below shows the offset in pitch one would use in a cooler or warmer room when 
tuning a flute designed to be played in tune at 72° F. 
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In the case of our 13.5-inch air column resonating at B4 + 21 cents (500 Hz) at 68° F, if 
we were to increase the temperature to 80° F, the pitch would be B4 + 41 cents (506 
Hz). 
 
If we wished to make the tube resonate at a perfect B (494 Hz), we would have to cool 
it to 54° F.  Or we could use a longer tube.  At 72° F, for example, our tube would 
resonate at 494 Hz if we increased the length to 13.72 inches. 
 

A Note on End Corrections 
 
As a final note in this section, we must acknowledge that the length of the physical 
tube does not accurately describe the acoustic length of the air column.  The air at the 
ends of the column is actually interacting with the air outside the tube.  The pressure 
node described above is a point at the end of the acoustic length of the air column.  
The end of the column is defined where the mathematical projection of the acoustic 
pressure wave outside the tube would reach zero.  The wave is never really pinned to 
zero pressure because it is actually radiating the pressure waves we hear as sound, but 
we can define a virtual length of tubing that extends beyond the physical end that 
defines where the pressure would be pinned to zero if is did indeed work that way.  
This virtual length is called an “end correction” or “false length,” and it allows us to 
model the air column as if it had an ideal length that had precisely-defined pressure 
nodes at its end point.  This is discussed in some detail in the next section. 
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Acoustic Length 
 
The acoustic length of a flute sounding the fundamental note is half the wavelength of 
that note.  However, the bore length (measured from the plug to the foot) is 
significantly shorter than that length.  To account for the rest of the length, the acoustic 
corrections at the ends of the flute must be considered.  The total acoustic length, then, 
is the sum of the bore length plus the corrections at the foot (k1) and the sound hole 
(k2). 
 

 
 
 

k1—the Acoustic End Correction (or “False Length) 
at the Foot of the Bore 
 
The vibrating air column in the bore extends past the openings of the tube.  This can be 
approximated by a bubble that is a half sphere with a volume given below.  The bubble 
can be converted to a cylinder with the same volume, and the length of that cylinder is 
defined as k1.  k1 is acoustically how far the air column extends past the end of the 
foot. 
 

1262
1 33 DDV spherehalf

ππ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

 

4

2 LDVcylinder
π

=  
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Before continuing, note that this is a general approximation that works fairly well 
within the precision of crafting a flute.  If a more precise estimate of the end correction 
is desired, the end correction worked out by Benade can be used.  That correction is  
 

( ) 54.0/242.0
065.0411.0

DT
Factor

+
−=  

 
where T is the thickness of the flute wall at the foot.  This factor is plotted below for 
various bore diameters and wall thicknesses along with the constant factor of 1/3 for 
reference. 
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k2—the Acoustic End Correction (or “False Length”) 
at the TSH 
 

 
 
On page 17 of “Secrets of the Flute” by Lew Paxton Price, k2 is described for a round 
blow hole, or embouchure.  An adjustment for the false length above the hole is given 
when the air column experiences partial containment by the player’s upper lip.  This is 
the same effect as what I describe as “bird encroachment.”  In this case, the 
embouchure is cylindrical, so the development of the idea is fairly straightforward.  
Later, geometric conversions of the air column contained within the hole are shown 
which are needed (but not necessarily the whole story…) to account for the rectangular 
TSH and the expansion of the hole due to the cutting edge ramp. 
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The new height of the false-length cylinder on top of the blow hole is for this specific 
case.  It includes an adjustment factor that is more easily measured than calculated, but 
I will go over my own concept that attempts to explain it in a moment.   
 
Now the corrected cylinder needs to be converted to an acoustically-equivalent 
cylinder with the same cross section as the main bore.  That is done with what Lew 
Paxton Price describes as the “magic ratio,” which is given by the cross-sectional area 
(labeled S) of a tube is divided by the length (L) of that tube.   
 

L
Sratiomagic =  

 
This ratio is used to convert a finger hole, for example, to an effective length of tube 
with the same diameter as the bore and the same magic ratio.  The ratio is used as 
follows: 
 

2

2

1

1

L
S

L
S

=  
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In this case, both the embouchure and bore cross-sectional areas are proportional to 
their diameters, so the constant factors used to calculate the area cancel, and the ratio 
becomes 
 

2

22

k
D

H
E

= . 

 
Solving for k2 yields the acoustic length of the embouchure. 
 

 
 
For the NAF, some geometric gymnastics are required, as mentioned before.  I will 
show the pictures, and leave the detailed calculations for the reader (!).  Note that I 
have not tested this (yet), but it is a consistent extension of the approach used by Price, 
and it shows a conceptual explanation of the bird effects.  So let’s begin… 
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The amount of bird encroachment depends on the bird configuration.  A bird with no 
chimney will have a small effect, while a bird with a deep chimney will have a much 
larger effect and reduce the cross section of the end correction cylinder substantially.  I 
have not worked out a sensible way to quantify the encroachment yet, but will likely 
end up measuring it.  To do that, I will assume I have everything else accounted for, 
calculate the k2 with no encroachment, then back the difference up to the point where 
the cross section of the top end-correction cylinder is adjusted to account for the 
encroachment.  I hope to eventually be able to generate some curves for different bird 
geometries so that the final k2 prediction will be more accurate.  Once that is done, 
frequency-dependent effects could be added to the theory.  This also extends to the 
encroachment of the plug on the lower bubble, which seems to be important at higher 
frequencies.  But I digress… 
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Now, we convert the cylinders to new cylinders with the same cross section as the 
main bore with diameter DB. 
 

 
 
I mentioned earlier that I would “leave the detailed calculations for the reader.”  This 
isn’t so much a cop-out than it is a practicality.  I can do the math—and probably will 
eventually to see how good the approach is and generate those curves I mentioned 
above—but such a long series of approximations and outright guesses for specific 
values will likely be fraught with errors.  In addition to that, there are some other 
effects that cause k2 to shorten as a function of frequency; those effects will be 
discussed later.  For now, the determination of k2 for the fundamental pitch is 
sufficient for determining the acoustic length of the overall flute.  For these reasons k2 
is best measured.   
 
To measure k2, simply play the fundamental note and figure out the half wavelength—
that defines the acoustic length of the flute.  Next, calculate k1 which is simply D/3.  
Finally, subtract the bore length and k1 from the acoustic length.  The answer is k2. 
 

The Playing Holes 
 
The playing holes, or finger holes, have the effect of shortening the acoustic length of 
the flute.  When a playing hole is opened, a short cylinder with a small cross-sectional 
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area is created that provides another path for the vibrating air column to reach the 
ambient atmosphere around the flute.  With the open hole, there are two paths to the 
outside (or more if additional holes are open).  These two paths act in parallel just as 
two resistors in parallel act in an electric circuit; the total resistance is made smaller 
than the individual resistances.  Acoustically, the effect is to shorten the length of the 
flute and raise the pitch. 
 
The analogy with the electric circuit holds if the effective length of the finger hole is 
adjusted so the diameter equals that of the bore.  First the corrected length of the 
playing hole is found in a similar fashion as the embouchure hole above, except there 
is no encroachment to be considered.  Then the magic ratio is once again invoked, and 
the effective length F with an equivalent diameter D of the playing hole with diameter 
P and real height T is 
 

⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛= TP

P
DF

3
22

  . 

  
This is depicted in the picture below.   
 

 
 
Now we can continue with the analogy of the parallel resistors by replacing the 
resistances by the acoustic lengths of the sections.  The finger hole is open at a 
distance LR (which includes the end correction at the foot), so the acoustic length X of 
the combined finger hole and bore section at the foot is 
 

FLX R

111
+=  

 
or 
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FL
FLX

R

R

+
=   . 

 
When X is added to the remaining upper segment on the left (LL, which includes the 
acoustic end correction length k2), a new substitution length LS is the acoustic length 
of the air column.  The new wavelength is SL2=λ , which corresponds to the new, 

higher frequency ( )Ss Lvf 2= , where vs is the velocity of sound. 
 
Since we need to consider multiple holes, let’s call F, X and LS for the first hole F1, X1 
and LS1.  To determine the frequency of the next open hole, the process above is 
repeated by replacing LB with LS, LR with X1+L12 and F with F2.  Here, L12 is the 
distance between hole number 1 and hole number 2, and F2 is the acoustic length of 
the second playing hole.  A new X2 is found along with a new LS2 that defines the next 
higher pitch.  X2 is 
 

( )
( ) 2121

2121
2 FLX

FLXX
++

+
=  . 

 
This is depicted below in the figure. 
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A pattern emerges as 
 

( )
( )

( )
( ) 6565

6565
6

3232

3232
3 ;...;

FLX
FLX

X
FLX

FLX
X

++
+

=
++

+
=   . 

 
If a six-hole flute is tuned to the pentatonic modes 1 and 4 using the popular fingering, 
some adjustments need to be made to the simple pattern above.  Namely, 
 

( )
( )

( )
( ) 5353

5353
5

4242

4242
4 FLX

FLX
Xand

FLX
FLXX

++
+

=
++

+
=  

 
By adjusting the playing hole parameters (location, diameter and wall thickness), the 
desired pitch for each hole can be reached. 
 

A Note on Playing Hole End Corrections 
 
The end corrections for the playing holes above were treated assuming they were 
simple cylinders.  In reality, the ends of the mini cylinders of the playing holes are 
curved because the bore is round, and the diameter of the playing hole is large enough 
compared to the bore diameter to require an adjustment.  Benade worked out this 
relationship, and the adjustment to the correction can be upwards of 5 to 10 percent 
higher depending on the size of the hole and bore.  The simple calculations above, 
however, tend to yield values that are quite close to the actual dimensions after tuning 
the first octave!  This may be due to the fact that the calculations above are based on 
approximations that neglect impedance effects that tend to shorten the corrections.  
Another factor is that the length of the hole is defined by something less than the 
thickness of the wall at the hole, although that may not account for the entire 
difference.  The impedance approach will be discussed later, but for the simple case in 
the first octave, the approximations essentially seem mask those higher-order effects. 
 
When we use the impedance calculations, particularly for the second octave, the more 
precise playing hole end corrections may be important, and are given here.  The inner 
factor is given by Ei, and the outer factor is Eo. 
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The length of the hole is slightly less than the thickness of the wall, and is given by 
 

( ) ⎟
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222
2
1

 

 
When the total corrected length is computed and compared to the corrected length 
from the previous simple calculation, one finds that for typical hole sizes compared to 
the bore sizes, the corrected length is generally higher by about 5 percent or more 
using Benade’s equations.  The results for 3/4- and 7/8-inch bores with either 1/8- or 
3/16-inch wall thickness are shown below. 
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At this point, all the basic calculations for designing a flute have been discussed.  
These equations are good for estimating the dimensions of a cylindrical flute to play 
the first octave in tune.  Once laid out, the tuning should proceed by the usual method 
of cutting the holes small and gradually increasing the diameters until the notes are in 
tune.  The second octave, however, presents several challenges.  A simple cylindrical 
flute will not play overblown notes in tune with those of the first register, so some 
modifications must be made.   The following sections go deeper into the various 
effects that different variables have on the intonation, and provides options for 
adjustments that will improve the intonation of the upper-register notes. 

 

Acoustic Impedance 
 

Using the Impedance to Describe a Vibrating Air 
Column 
 
In “Secrets of the Flute,” Lew Paxton Price talks about the magic ratio which is given 
by the cross-sectional area (labeled S) of a tube is divided by the length (L) of that 
tube.   
 

L
Sratiomagic =  
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This ratio is used to convert a finger hole, for example, to an effective length of tube 
with the same diameter as the bore and the same magic ratio.  The ratio is used as 
follows: 
 

2

2

1

1

L
S

L
S

=  

 
 

This converted length is the acoustic length of the finger hole, with which calculations 
of combined lengths of bore sections and finger holes can be performed. 
 
Let’s look at an example.  If we have a bore with a diameter D and a finger hole with a 
diameter P and a thickness T, we wish to find a length FP that is the acoustic length of 
the finger hole (in other words, the equivalent length of the finger hole if the diameter 
was D).  First, we can find the cross-sectional area of both the bore and the finger hole 
as  
 

( )22

2
DRSD ππ ==  

 
and 
 

2)2(PSP π=   . 

 
For the length of the finger hole with its associated end corrections, consider that it is 
simply a very short tube that is open at both ends.  The end corrections for each end 
are P/3, so the length LP is  
 

TPLP +⎟
⎠
⎞

⎜
⎝
⎛=

3
2   . 

 
The magic ratio has the same value whether it uses the real dimensions or the 
converted effective dimensions; that’s why it is considered “magic.”  In this example, 
the equivalent ratios are 
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FP is the only thing we don’t know in that equation, so we can solve for that to find the 
answer: 
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which is the same equation used for the finger hole acoustic length found on page 36 
of “Secrets of the Flute.” 
 
We can think about the physical meaning of the magic ratio in terms of the resistance 
to air flow.  The idea can be understood if we think about blowing through a narrow 
straw, like one of those tiny coffee stirrers, or a cocktail straw.  Now think about 
blowing through a soda straw, which has a much larger cross-sectional area.  If both 
straws are the same length, the soda straw will be much easier to blow because the 
opening is much bigger.  However, what we are trying to do is find a straw that is big 
in diameter like the soda straw, but takes the same effort to blow through as the 
cocktail straw.  This can be done if we make the soda straw much longer.  The reason 
a long straw is harder to blow through is that we are pushing against the inertia of the 
entire column of air the length of the straw, and that inertia makes up for the bigger 
opening.  The inertia resists the blowing. 
 
In a like manner, a cocktail straw could be cut smaller so that the effort of blowing 
through it would be the same as through a normal soda straw.  But that raises a 
question about flutes; why not convert the bore to an equivalent diameter equal to the 
finger hole instead?  This clearly would not work because the lengths would be much 
too small to represent a vibrating air column that must be a half wavelength of the 
pitch in the first octave!  So what is going on? 
 
By looking closer at the dynamics of the air in the vibrating air column, we find that 
the magic ratio works well in areas of high flow and low pressure fluctuations, such as 
at the ends of the air column.  (This is called a pressure node, or a flow antinode.)  But 
as we look at parts of the column that that have higher pressure changes and less air 
motion, the magic ratio becomes increasingly less accurate.  In fact, in the center of the 
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bore where the pressure amplitude change is highest and the flow velocity is lowest, 
the equivalent acoustic lengths flip!  (This area is a flow node, or a pressure antinode.) 
 
In the example of the straws, consider that we are blowing a puff of air from both ends 
now, and we’re trying the push air into the tube with the same effort.  In this case, let’s 
assume the ends are made from the soda straw, and the middle section is the diameter 
of the cocktail straw and we are trying to find the equivalent soda-straw length for the 
cocktail-straw-sized section.  The cross sectional area is smaller in the middle of the 
tube now, and when the air blown in from both ends meets in the middle, the local 
pressure will be higher since we’re trying to push the same amount of air through a 
narrower tube.  This higher pressure generates a larger opposition to the flow, which is 
another way of saying the springiness of the air is increased.  This, in turn, results in a 
higher sound velocity, which means that a sound wave would travel across the thin 
tube as fast as it would travel across a fat tube that was much shorter.   
 
What this is saying is a section of tube near the middle of the bore will have an 
equivalent length that behaves in an opposite manner to the magic ratio—a long tube 
with a small cross-sectional area is acoustically equivalent to a short tube with a large 
cross section in the region of low flow velocity and high pressure amplitude. 
 
The magic ratio says that a short tube with a small cross-sectional area is acoustically 
equivalent to a long tube with a large cross section; but this is true only in the region of 
high flow velocity and low pressure amplitude.  When the two rules are combined, it 
explains why a half wavelength-long tube (end corrections included) will have the 
same resonance frequency regardless of the diameter. 
 
You may have noticed that I changed the rules of the game in the second straw 
example and said we were blowing a puff of air in from both sides instead of just 
trying to blow through the tube.  That’s because we have to be talking about a 
vibrating air column in order for the idea to make sense and be applicable to the flute.  
Recall that the vibrating column is like a spring.  The spring stores energy as it is 
compressed, releases the energy as it expands back out, stores more energy as it is 
stretched, and releases the energy again as it contracts.  The spring reacts to being 
pushed or pulled by pushing or pulling back.   
 
At the ends of the tube, the situation is different because the ends of the air column are 
not constrained.  In this case the ends can be thought of as slugs of mass that are 
pushed in and out of the tube.  They do not store energy and give it back—they use it 
up.  Instead of pushing or pulling back like springs, they are just inertial masses that 
resist being pushed or pulled. 
 
In the above two paragraphs, I have chosen two words carefully:  the springs react and 
the inertial masses resist.  These are key concepts in the description of electrical 
circuits in terms of impedance.  Electrical impedance is a measure of the opposition to 
a sinusoidal or alternating-current (AC) signal, and has a reactive component as well 
as a resistive part.  The reactive components in an AC circuit are the capacitors and 
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inductors, and they are electrical energy storage devices just as our spring is a 
mechanical energy storage device.  The electrical impedance is defined as the AC 
voltage divided by the AC current.  If the voltage and current are in phase (their peaks 
and valleys line up perfectly), then the impedance is purely resistive and the power in 
the circuit dissipates.  If a capacitor is added to the circuit, the change in voltage will 
be slowed or delayed compared to the current.  If the voltage and current are out of 
phase (the peaks and valleys of one lag behind those of the other), then part of the 
energy is alternately stored and released, and the impedance has a reactive component. 
 
In an acoustic “circuit,” the sound pressure is analogous to voltage, and the flow 
velocity is analogous to current.  For example, in the contracting phase of the column, 
as the pressure in the middle of the bore builds, the air particles continue to flow 
toward the middle until the force of the stored energy in the spring can overcome the 
momentum of the air particles.  At that point in time, the pressure is at the maximum 
and the flow is zero.  If the pressure is described with a sine curve, then the flow 
would have to be described by a similar curve, except that it would have to be 90 
degrees out of phase to be zero when the pressure was at a peak.  In other words, the 
flow would have to be described by a cosine curve. 
 
The acoustic impedance is defined as the sound pressure divided by the flow velocity, 
or 
 

U
pZ =  

 
where p is the acoustic pressure wave in a cylindrical tube, which is the amount the 
pressure differs from the surrounding atmospheric pressure.  The acoustic pressure is 
given by  
 

( ) tjekxpp ωψ+= sinˆ  
 
and U is the volume flow velocity given by 
 

( ) tjekx
jpc

SpU ωψ+−
= cos

ˆ
 

 
These equations are “complex” (i.e., mathematically they have “real” and “imaginary” 
parts), but for almost everything on which we will use these equations, the complex 
math can be ignored.  For completeness here, I will mention that j is 1− , p̂  is a 

complex constant that will soon be cancelled out, c is the velocity of sound, and tje ω  
is a phase term that causes the pressure and flow to chase each other around in 
complex space, but that will cancel out as well.  The other terms will be defined in a 
moment.  The impedance, then, is 
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where S is the cross-sectional area of the tube, x is the distance along the acoustic 
length of the vibrating column, and ψ  is a phase term defined by the conditions at the 
ends of the section of tube under consideration.  The wave number k is given by 
 

λ
πω 2m

c
k ==  

 
where λ  is the wavelength of the sounded frequency that is related to the angular 
frequency ω .  The value of π  is 3.14159…, and m is the mode number such that 
m=1 for the fundamental mode and m=2 for the first overtone (over-blown notes). 
 
For a simple pipe open at both ends, the pressure at the ends is fixed at atmospheric 
pressure, so the sound pressure is fixed at zero, which means the impedance is also 
zero.  If x=0 at one end, then ( ) 0tan ≡ψ , or 0=ψ .  The other end is at x=L, so  
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The useful solutions are for Lmk π= , with 2λ=L .  So the impedance of a 
simple cylindrical tube is 
 

⎟
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If the impedance for the first mode is plotted (ignoring the constant terms), the value 
goes from zero at the ends to infinitely positive or negative in the center of the air 
column.  (Note that the negative values for impedance just mean that the spring is 
pushing in the opposite direction than in the positive region).  The infinite impedance 
at the center of the column means that no air actually flows past this point, which is 
what is actually happening in the flute.  Another way to say it is the admittance is zero 
in the middle of the column, and it is infinite at the ends.  Admittance is the inverse of 
impedance, and will be discussed in the next section. 
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Notice that near the ends of the vibrating column, the tangent curve is fairly straight 
for almost 20 % of the length of the tube.  In this area, the impedance can be 
approximated by a straight line given by SkxZ =  when 0=ψ .  Let’s say we want 
to replace 10 percent of the end of the tube with a narrow tube, and we want to find out 
how long the tube would have to be.  An example of this might be a choke at the foot 
of the flute to shorten the flute while keeping the same fundamental frequency.  A 
choke is basically a plug with a hole drilled in it, and the hole is smaller than the 
diameter of the bore. 
 
EXAMPLE:  Let’s set up the problem.  Let’s say the half wavelength-long air column 
is 16 inches, and the 10-percent mark is 1.6 inches, which we will label X1.  The 
diameter of the bore is 0.75 inches with a cross-sectional area we’ll label S1, and we 
wish to make a choke with a 0.375 inch-diameter hole with a cross-sectional area of S2.  
The value of the impedance at X1 in this linear part of the column is 
 

( )
1

1
1 S

kX
XZ =  

 
where k is fixed by the wavelength of the fundamental note, or λπ2=k .  We now 
wish to know how long the choke needs to be, which is X2.  In order for this to work, 
the impedance at X2 for the narrow tube must be equal to the impedance at X1 for the 
wide tube.  So, 
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If we simplify and invert this, we get 
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You may have noticed that this is nothing more than the magic ratio!  Now we can 
solve for X2 to get 
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If we were to use the impedance functions, we would have 
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This is the exact solution, which is about 3 percent higher than the solution given by 
the magic ratio.  If we wanted to replace a quarter of the air column, or 4 inches, then 
the error would be about 25 percent, and if half the column were replaced, the error 
would be 400 percent!  A graphical representation of the 4-inch case is shown below to 
illustrate the process for finding the solution with the impedance function.  Both tube 
diameter sizes are represented in the graph on the left with their respective impedance 
curves.  At the 4-inch mark (X1) the value of the curve for the large diameter tube is 
marked with a blue cross.  The same value for the small diameter tube is marked with 
a red cross.  That point lies at the location X2, and is the length of the narrow tube 
required to replace the 4-inch section of the larger diameter tube.  The final choked 
tube is shown in the second picture along with the impedance curves shifted so the 
interface between the two tubes is in the same place.  Note that the impedance curve 
for the new tube is continuous, and is a combination of the two curves. 
 

 
 
One point to be made here is that simplifying approximations are very useful if they 
are used where intended, but can lead to erroneous results if misused.  In this example 
we can recall the earlier comment about the magic ratio being good in the region of 
high flow velocity and low pressure amplitude, which characterizes a pressure node.  
The end of the tube is such a place, but as we go  further into the bore, the character of 
the vibrating air column changes from that of a pressure node to that of a flow node 
where there is low flow velocity (and high pressure amplitude).  The transition from 
pressure node to flow node is gradual and continuous, so while there are regions in 
which certain approximations can be used, the impedance function can be used along 
the entire column. 
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Finger Holes and Shortening the Acoustic Air 
Column 
 
The acoustic admittance Y is another very useful concept, and it is simply the inverse 
of the impedance, or, 
 

( )ψ+−
== kx

jpc
S

Z
Y cot1

. 

 
As with electronic circuits, the admittance is useful in evaluating parallel circuits.  This 
happens acoustically in the flute when a finger hole is opened and the vibrating 
column branches out through the hole.  From a point below the finger hole, both the 
branch section and the tube between the hole and the foot start with the same 
impedance value and both end outside the flute with the an impedance of zero.  If we 
use admittance instead of impedance, these two branches can be simply added together 
as with two parallel circuit elements. 
 

 
 
Consider the case where a finger hole at location XH is opened in a tube with a total 
length LT.  Opening the hole will cause the flute to play a higher frequency that has an 
acoustic length that is less than LT.  The new length can be represented by a 
substitution tube of length LS and the new wave number is defined by sLmk π= .  
The finger hole has a length LH and a cross-sectional area SH, whereas the cylindrical 
tube sections all have a cross-sectional area of S.  Note that all the lengths described 
here include adjustments for end corrections. 
 
There are several ways to analyze this problem, and they essentially amount to 
choosing a view of the problem and carefully keeping track of the variables and signs.  
I choose to focus on the elements to the right of the point XH.  We know that k is fixed, 
even if we don’t yet know its value.  We also know that the open ends of the real tube, 
the finger hole and the virtual substitution tube all have an admittance of infinity 
(impedance of zero) because they are in contact with the outside atmosphere, and are 
therefore at a pressure node.  We also know that the admittance looking to the right of 
XH for the combined finger hole and right-side tube section is the same as the 
admittance of the virtual tube section, or 
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VRH YYY =+  
 
where YV is the virtual section of length LS – LL.  The admittance at the open end of 
the substitution tube on the right at the pressure node is infinite, so we can choose x=0 
there.  By doing so, the boundary condition forces 0=ψ , and the admittance is 
 

( ) [ ]( )LSHV LLk
jpc
SXY −−= cot  . 

 
Acoustically, we can argue that the ends of the finger hole and right-side tube sections 
are open at x=0 as well, so in like manner, 
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Putting these together, we find 
 

( ) ( ) [ ]( )LSRHH LLkSkLSkLS −−=−− cotcotcot   , 
 
If we rearrange this a little, we get 
 

[ ]( ) ( ) ( ) 0cotcotcot =++− RHHSL kLSkLSLLkS  . 
 
If we know all the dimensions and wish to find the pitch, we can recognize that this is 
a function of k and use a computer program to solve for the zeros.  This can be done 
graphically by plotting the function using a range of values of sLmk π=  that are 
sure to contain the answer, and choosing the k value where the function crosses the x 
axis.  This is particularly interesting if all the variables are known in the first octave 
and we wish to compute the pitch of the second octave note.  This will be discussed 
further in a later section. 
 
If we know what we want k to be to yield the desired pitch, and wish to find the finger 
hole placement LR, we can rewrite the equation as 
 

( )[ ]( ) ( ) ( ) 0cotcotcot =++−− RHHSRT kLSkLSLLLkS  
 
and solve for LR.   
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EXAMPLE:  Let’s say we have an F# flute and want to find the distance from the foot 
to place the first hole, which will play an A.  We can figure out the acoustic length 
(half wavelength) for the F# by 
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By opening the hole, we want to shorten the acoustic length to that of an A.  Using the 
same approach above, this turns out to be 15.4 inches.  We’ll call this the substitution 
length, LS.  Now let’s find the length of the finger hole.  If the desired hole diameter is 

165=P  inches and the wall thickness is 163=T  inches, the hole length with 
end corrections will be 
 

inches397.0
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using the simple end corrections.  If Benade’s corrections are used, namely 
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then LH = 0.426 inches. 
 
The cross-sectional areas of the finger hole and bore are SH and S, respectively.  But 
since the area appears in all terms, we can drop the common terms that will cancel 
anyway.  In other words, 2DS ∝  (S is proportional to the diameter squared), so our 
equation becomes 
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( ) ( )[ ]( ) ( ) ( ) 0cotcotcot 222 ≡++−−= RHSRTR kLDkLPLLLkDLF . 
 
We know all the terms in the equation except LR, which is the variable we are trying to 
find, so we can say that the equation is a “function of LR” and give it the label ( )RLF .  

The correct value of LR is the one that makes ( ) 0=RLF .  One way to solve this is to 
first recognize that  
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Since the function is periodic, a shift of πm  will give an equal value, so we can 
remove that variable from the equation.  Then we can use a trigonometric identity that 
can be found in a math book that says 
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Taking that on faith (or deriving it for the fun…) we can now write the equation as 
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This can be rearranged using straight algebra to get 
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This is a quadratic equation that can be solved for ( )RkLcot  using the famous 
“quadratic formula” to get 
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Using a bore diameter of 7/8 inches and the other values defined above, we use the 
positive solution (the one that makes sense…) that turns out to be ( ) 572.0cot =RkL .  
Then we can solve for LR using 
 

( ) 15.5572.0cot1 1 == −

k
LR  . 

 
This is the hole location from the end of the acoustic column of air.  To find the 
location from the foot of the bore, we subtract the end correction, D/3, to get 

86.4=RL inches. 
 
An alternate solution is to plot the function for a range of LR values, and the solution is 
where the function crosses the x axis. 
 

 
 
Note that the solution using the approximation of kLkL ≅)tan(  is shown, and is 
lower in placement by about 1/3 inch, and almost 1/4 inch if a simple finger hole 
correction is used.  If the approximate solution were used and the finger hole ended up 
slightly larger than predicted, or shallower or undercut when tuned, this could be a 
reasonable explanation.  The alternative that the “standard” model gave good results 
may indicate that there are other effects at play that we have not yet addressed for 
which the approximate solution serendipitously compensated. 
 
Subsequent finger hole placements can be found by replacing LS by LT, defining a 
new LS for the next note, and repeating the process until all the finger holes are 
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complete.  Note that the end correction will not have to be subtracted from the 
subsequent results as long as the locations of the previous LS lengths are carefully 
tracked.   
 
Before proceeding further, we should look at the effects of the impedance at the other 
end of the flute.  Since the sound hole behaves more like a finger hole than an open 
end of the bore, the impedance and associated end correction will have a dependence 
on frequency.  Furthermore, the extent of a backset between the plug and the sound 
hole will induce additional frequency-dependent corrections.  Since the end corrections 
at the sound hole are dependent on frequency, the acoustic tube length LL to the left of 
XH will be slightly different for each finger hole. 
 

End Corrections at the Sound Hole 
 
The shape of the tangent curve should also affect the length of the end correction at the 
sound hole.  As stated earlier, the length of this correction, k2, is most easily 
determined by measuring fundamental pitch and translating it into a total acoustic 
length, then subtract the bore length and the foot end correction.  But at higher pitches, 
the sound hole interacts with a larger fraction of the air column, and that means a 
larger part of the tangent-shaped impedance curve is in play.  If the measured k2 is 
taken as a baseline, the relative shift of higher pitches can be estimated.  Such a shift is 
plotted below.  The two curves represent notional fundamental k2 values that would 
depend on the configurations of the birds, and perhaps the proximity of the plug to the 
sound hole. (note: I have yet to fully test this concept with further experiments…) 
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Mathematically, this is based on the equation 
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where TTSH is the thickness of the flute at the sound hole, and DTSH is the average 
equivalent diameter of the sound hole.  Solving for k2 yields 
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Recall that k is the wave number 
 

λ
πmk 2

=  , 

 
so as the pitch goes up, the wavelength gets shorter, and the wave number k gets larger.  
After crunching the numbers, one finds that since DTSH, Dbore and TTSH are constants, 
the value of k2 drops as the pitch goes up.  Note that if the magic ratio was used, k2 
would not change with pitch. 
 
To test this, I performed an experiment in which k2 was found in a flute with no finger 
holes, but of various lengths.  This allowed the effect of opening finger holes to sound 
higher frequencies, but the physical length of the bore was known, and the value of k1 
was assumed to be a constant D/3.  The following shows the result of the experiment. 
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In this case, the bore was measured from the plug, which was placed at three different 
locations relative to the northern edge of the TSH.  The solid points represent the 
fundamental pitch of the tube for each length, and the lightly filled points are the 
overblown note.  There is a distinct bow in the curves that shows that k2 gets longer at 
first, then gets shorter after peaking at some pitch that grows as the backset increases.  
The graph gets more interesting when the bore is measured from the back of the TSH, 
as shown below.  Using three different backset values and using the distance to the 
TSH (standard practice in classical flute theory) yielded some curious insights into 
what may be happening. 
 

 
In this case, the curves cross in a region of the graph.  It turns out that the crossover 
occurs approximately at the point where k2 is 1/8 the acoustic length of the pitch.  This 
is where the air column is half way between a pressure node and a flow node.  Later 
when bore perturbations are discussed, we will show that an increase in the bore 
diameter in the vicinity of a pressure node will have a sharpening effect, and near a 
flow node it will have a flattening effect.  In this case, if the backset is considered to 
act as a bore enlargement just inside the TSH, then for longer bore lengths (lower 
pitch) the enlargement should have a sharpening effect proportional to the depth of the 
backset since the perturbation is nearer the pressure node outside the TSH than it is to 
the pressure antinode, or flow node, inside the bore.   
 
In the bore perturbation approach, enlargements in high-flow areas of the vibrating air 
column (near a pressure node with little pressure variation) result in a sharpening of 
the pitch.  Likewise, enlargements in lower-flow regions (high pressure fluctuations) 
result in a flattening of the pitch.  The region half way between the pressure node just 
outside the TSH (at the end of the column section described by k2) and the first flow 
node (pressure antinode) inside the bore has equal flattening and sharpening influences, 
so there is no change in pitch for an enlargement in this region. 
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Note that for even the zero-backset case, an enlargement perturbation still exists 
because of the geometry of the flat plug.  A concave plug shape may exist that would 
result in no perturbation, but that is yet to be determined.  So, for longer physical bores, 
the enlargement perturbation will occur proportionally closer to the pressure node at 
the end of the acoustic air column, and a sharpening of the pitch will be more 
pronounced in longer bores.  The sharpening is due to the effective shortening of the 
acoustic length of the bore when the perturbation is in a high-flow region.  This means 
the physical dimension of the bore is longer than the acoustic dimension.  When the k2 
is calculated as 
 

( )12 kLLk BA +−=  
 
the measured BL  is really too long, which means the calculated value of k2 will be too 
small.  A more precise equation might be 
 

( )12 kLLk pBA +Δ+−=  
 
where pΔ  is the change in acoustic length of the physical bore due to the perturbation.  

In the case of the perturbation causing a sharpening of the pitch, the value of pΔ  
would be negative because the physical bore is effectively shortened.  Likewise, for 
the higher pitches of the shorter physical bore lengths or overblown notes, the 
perturbation region resides closer to the first internal flow node, and the sharpening 
effect will diminish as the perturbation gets closer to the midpoint between the 
pressure and flow nodes.  For higher pitches for which the perturbation resides beyond 
that “nodal midpoint” on the side closest to the flow node, the effect will be to flatten 
the pitch, or to increase the effective acoustic bore length.  In that case, pΔ  will be 
positive, which means the actual value of k2 will be smaller than what was observed in 
the graph.  Again, the effect will be enhanced by a deeper backset that will produce a 
larger perturbation in the bore.   
 
This implies that a reversal in the observed (or incorrectly-measured) change in k2 
length will occur when the perturbation crosses the nodal midpoint.  Such a reversal is 
observed if the experimental k2 vs. frequency plot is derived by using the distance to 
the TSH instead of the plug is used for the measured bore length, as shown in the 
second chart above with the bore length measured to the TSH.  If the measuring point 
is chosen carefully (north edge, center, or some other point along the TSH), the zone 
where the lines cross will occur at the pitch for which the backset perturbation occurs 
close to the nodal midpoint.  In other words, the k2 at the crossing zone will represent 
the true value of k2—at least for a particular frequency. 
 
If the true value of k2 was constant (i.e., not a function of frequency), then the 
perturbation effects would be nearly symmetric (odd symmetry) about the nodal 



- 44 - 

midpoint value.  If it was a function of frequency as described by an impedance 
calculation, the symmetry would have a downward-sloping bias to it.  So, the 
experimental curves appear to be described by the added effects of the impedance 
(shorter k2 for higher frequencies) and the backset perturbation (shorter for lower 
frequencies and higher for higher frequencies).  This is shown below where the second 
graph has been redrawn with a notional line (dashed heavy black line) representing 
what the true value of k2 might be for this case. 
 

 
So why do the octave notes usually play flat in a cylindrical flute?  From the first 
graph in this section, we can see that k2 should get shorter, but the proposed concept of 
a perturbation effect near the plug can account for the apparent lengthening of k2 if the 
perturbation (or some other effect that explains it) is neglected.  With finger holes 
involved, the situation is even more complex, and some of the flatness occurring in the 
second octave can be attributed to the impedance associated with the open playing 
holes.  Another contributor may be some nonlinear effects occurring from the 
interaction of the air jet on the cutting edge.  These are ideas that I hope to develop 
later… 
 
…Ok, it’s a little later, but I still have more to do.  
 
The following is the experiment above repeated using the flute as a filter for a white 
noise source.  The measurements are the frequencies for which the impedance is a 
minimum, which includes the higher frequencies in the spectrum for each length and 
backset.  The dashed line is taken from the previous experiment (note that the 
temperatures for the two experiments were different by about 10 degrees F).   
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The trend suggests that the impedance approach at the beginning of this section has 
merit, but also suggests that there is an impedance effect induced by the air jet.  
Fletcher & Rossing have an explanation of such a phenomenon that may explain the 
difference between the passive (white noise) and active (sound generation using the air 
jet).  If that explanation works out, it means that the air jet induces a phase shift in the 
impedance that is more pronounced in the high-flow part of the vibrating air column, 
and effectively makes the flute acoustically shorter than what the passive theory would 
predict.  This sort of makes since because such a phase shift usually is manifested in 
the imaginary part of a complex function.  For such a “gain” term, the shift would be 
positive, whereas a negative shift would be the result of a “loss” mechanism (rough 
walls, etc) that may make the flute appear longer (rough walls slow the propagation).  
Keep in mind that I have not yet thought this “explanation” through, so I could have a 
couple things backward or otherwise off.  But the data shows what has been observed, 
which is what it is. 
 

 
 
 
 
…more to come later…from here to the end of the section is essentially a draft 
outline with a few partially-developed concepts 
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Backset Effects 
 
The volume of air between the sound hole and the plug has a significant effect on the 
relative tuning between the registers.  The perturbation treatment mentioned above 
may be valid, but it may also only be a partial explanation of the plug position’s 
influence on the frequency-dependent tuning. 
 
Outline: 
- Qualitative description 
- Helmholtz resonator description 
- Admittance model from Nederveen 
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- Model results & discussion 
 
The effect of different bore L/D ratios and TSH designs (as described by K2 which 
gets larger as the TSH).  Note that the model is for a perfect cylindrical flute, and it 
says that the overblown fundamental is in tune in all cases if there is no setback. I have 
yet to look at what happens when finger holes are in the mix. The distances in the 
graphs are all referenced to the bore diameter since the ratios are what matters and are 
valid for any size flute. 
 

 
 
The model shows that the setback has a dramatic flattening effect in the second octave 
when combined with fatter flutes (i.e., lower L/D ratios). The K2 also has a significant 
effect when a TSH / Bird design results in a large K2 (i.e., narrow TSH or a deep 
chimney in the bird) and will amplify the setback's flattening effect. 
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So, a narrow bore, large TSH and no chimney in the bird are design elements that 
should help mitigate a flat second octave. Minimal setback should help, but there 
seems to be at least one other yet-to- be-determined variable that flattens the second 
octave since many zero-setback flutes are still flat in the second octave.  This could be 
due to a plug-encroachment effect that works in a similar fashion to that of a chimney 
or overhang added to a bird at the outer side of the TSH.  The end correction in the 
figure below refers to the contribution from the plug’s proximity to the sound hole.  
The form of the encroachment effect is notional at this point. 
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Bore Shapes and Perturbations 
 

A Segmented Bore 
 
Recall that the acoustic length of a column of air in the first octave is 2λ=AL , 

where the wavelength of the sound isλ .  The wave number is λπ2mk =  where m 
is the mode number if higher registers are involved, and rearranging this gives 

πmkLA = .  This is a result of the boundary conditions placed on the standing wave 
in the bore containing the vibrating air column.  The impedance of the bore is given by  
 

( )ψ
ρ

+
−

= kx
S

cjZ tan  

 
where S is the cross-sectional area of the bore, which is a function of the location x 
along the column, and ψ  is the shift in the phase of the tangent function.  In the 
following, the phase shift is used to move the tangent function associated with the 
impedance of each section of the bore along the x direction so that the tangent curves 
line up at the interface between sections.  There will be more discussion on that shortly.  
Finally, cjρ−  includes the air density and speed of sound, which was described 
earlier.  It will be neglected in the following section because it is essentially constant 
throughout the air column and algebraically cancels in the equations. 
 
For the column of air, the impedance at the ends has to equal to zero because the ends 
are connected to the air outside the bore.  This means that 0=+ψkx , which implies 
that 0=ψ  at 0=x , and πψ mkx −=−=  at the end of the column where 

ALx = .  This is the “boundary condition” that makes πmkLA =  when the air 
column is vibrating in resonance with the bore.  Note that the physical length of the air 
column, including end corrections, is not necessarily the same as the acoustic length.  
That will become apparent later.  Another note about the air column is the wave 
number k is the same everywhere in the bore, no matter what the shape is; k is defined 
by the wavelength of the standing wave, or the pitch of the note.  This also means that 
the period length of the tangent function describing the impedance of any given 
section of the bore will be the same as for every other part of the bore.  The tangent 
function will vary in magnitude because the cross-sectional area S of that section of the 
bore defines the factor that scales the tangent function up or down.  Another thing that 
can change about the tangent function is the phase—whether the function is shifted to 
the right or left—which is further explained below. 
 
If the bore is divided into sections, additional boundary conditions will exist at the 
interfaces between the sections.  Physically, we know that the impedance between one 
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section and the next must be equal for both sections at that point.  The boundary 
condition at the interface is not simply zero, so we first have to calculate what the 
value of the impedance (the tangent function scaled by S1 ) should be at that point.  
This is given by 
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A bore with an arbitrary shape can be approximated by a series of cylindrical sections 
that are mathematically easy to handle.  By making this approximation, each section 
can be solved separately as long as we keep track of how each previous section defines 
the boundary condition between it and the new section.  As the bore is divided into 
more sections the accuracy of the calculation will get better, and small steps in cross-
sectional area between sections should be used.  A good way to see if the sections are 
fine enough is to do the calculations for increasingly finer steps until the answer 
essentially doesn’t change any more. 
 
 

 
 
Here’s the method:  First we make an educated guess about what the wave number k 
should be.  The value of k will probably be changed a few times until the answer 
converges to the correct solution, but that will be addressed later.  A good starting 
point is BLmk π=  where LB is the bore length (including end corrections).  We 
then calculate the location on the impedance curve (a.k.a. the angle, or the angular 
distance) that coincides with the end of the first section; this is simply kL1 where L1 is 
the length of the first section (including the end correction…).  Plugging this in to the 
impedance equation defines the first section of the overall impedance curve for the 
bore, and it gives us the impedance value at that first interface.  Now we make sure the 
value of the impedance curve for the start of the second section is the same.  Note that 
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the angular distance of the beginning of the second section is the same as that of the 
end of the first section.  Since the second section may have a tangent function of a 
different magnitude, the curve may not line up properly, so the function needs to be 
moved right or left (a phase shift) to line up the curves at that point.  The phase shift 
for that second section is 2ψ , and we now need to find its value. 
 
For the very first section, we know that the boundary condition at the opening forces 

01 =ψ , so at x=L1 we have 
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Solving for 2ψ  we get 
 

( ) 11
1

2
2 tanarctan kLkL

S
S

−⎥
⎦

⎤
⎢
⎣

⎡
=ψ  

 
The whole impedance curve describing the second section will now be shifted left or 
right so that the starting point is no longer at 0=x .  The difference between the 
shifted starting point and zero is the phase shift.  Then the section of the curve from 
kL1 to kL2 that corresponds to the second bore section is added to the first segment of 
the impedance curve.  Drawings of this process are presented below to help visualize 
these steps. 
 
For the next section, we repeat the steps above.  To find the impedance value at the 
next interface, find the angular distance defined by the length of the section (call it L2), 
and that angle is kL2,  add that to the total argument in the tangent function for the 
current bore section, and find the new impedance value.  That is the value that must be 
matched at the start of the third section.  
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The argument in the tangent functions will continue to grow as sections are added.  
This could get messy, so a convenient approach is to lump all the section lengths into a 
single variable.  Let’s introduce it as a new substitute length X so that 
 

32321

22221

ψψ
ψψ

+=++
+=++

kXkLkL
kXkLkL

 

 



- 51 - 

then 
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Now, solving for 3ψ  gives us 
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Note that a pattern has emerged.  For each section, which we can label with “i” the 
phase iψ  is 
 

( ) 111
1

tanarctan −−−
−

−⎥
⎦

⎤
⎢
⎣

⎡
+= iii

i

i
i kXkX

S
S

ψψ  

 
where  
 

∑
−

=

−−−

=

+++++=
1

1

123211
i

j
j

iii

L

LLLLLX L

 

 
This process continues until the end of the bore is reached.  The drawing below shows 
this process in which a new section of bore is getting added to the impedance curve.  
Call this section B, which lies on the blue dashed curve.  The previous section (A) lies 
on the red dashed curve, which already has a phase shift of Aψ  relative to the starting 
point of the bore.  In the left picture, the B curve is plotted before a phase shift is 
applied, so it has the same phase as the A curve.  Plotting the impedance of the new 
section on this curve leaves an impedance mismatch at the interface.  This is because 
the height of the curve depends on the bore cross section, and the two sections are 
different in this case.  Since the impedance must match, the B curve is moved to the 
left until the impedance curves line up.  The amount the curve must be moved is the 
phase shift ( ψΔ ) relative to the previous section, and the total phase shift for the B 

curve is Bψ . 
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As we go from section to section along the bore, that phase shift will move the 
impedance curves for the bore sections back and forth, but by the time we get to the 
end, the shift must be such that the impedance is zero.  If the impedance isn’t zero, 
then the wave number k needs to be adjusted and the process started over.  This is an 
iterative process that is best done on a computer! 
 
At the end of the air column, the length is LB (the bore length, including the end 
corrections).  The boundary condition requires that the impedance equal zero at the 
end, but the phase shift is not necessarily zero.  Instead, the total of the argument of the 
tangent function must be a multiple of π , or 
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where nψ  is the final phase shift.  Recall that ALmk π= , so 
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In either case, nψ  is small, and as nψ  approaches zero, LA and LB become equal.  For 
positive phase shifts, the overall bore length will be less than the acoustic length, and 
vice-versa.3  The picture below demonstrates this concept.  There are four bore shapes 
                                                           
3 Note that the phase angle is the distance from the starting point of the tangent 
function to the kx=0 point, so a positive phase shift means that the tangent curve is 
shifted to the left.  This can be a bit confusion for people who have not used phase 
angles before! 
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shown: a straight cylinder, a straight taper, a tube with dilation in the middle, and a 
tube with flared ends.  The shapes are depicted in each graph. 
 

 
 
Note that the shape of the curve for the cylinder follows that of a tangent curve with a 
constant scale factor (since the cross section is constant throughout the bore).  The 
dashed curve is the tangent curve for this case, and the same curve is drawn in each 
case for comparison.  The straight taper shows a distortion in the curve that shifts the 
center of the curve toward the narrower foot of the bore.  Notice that the bore length 
and the acoustic length are equal in this case. 
 
The lower two pictures show the impedance curves for the other two types of 
perturbations.  The bore with the fat middle can also be thought of as a bore with 
constrictions on the end.  In an earlier discussion, the case of a constriction at the foot 
was discussed, and the result was a shorter bore length for the same sound wavelength.  
This is consistent with that discussion.  The last bore with the fat ends turns out to 
have the opposite effect; the bore is longer than the acoustic length.  Recall the 
discussion on the validity of the magic ratio when the section of a tube in question was 
far from the ends where the impedance was zero.  This case demonstrates 
mathematically why a constriction at a flow node will actually decrease the acoustic 
length.  This effect of perturbing the bore in the vicinity of flow and pressure nodes 
and antinodes is the basis for a qualitative approach to predicting their effects on the 
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intonation of a flute.  This is what Benade referred to as a perturbation weight function, 
and will be discussed later.   
 
The location of the nodes and antinodes are particularly important when the first and 
second octaves are to be in tune.  The plots below show the same cases above for the 
second octave. 
 

 
 
Notice that the acoustic lengths for the lower two cases are very close to the bore 
lengths.  That is because, in these cases, the left and right halves are close to being 
conical.  In other words, they are approximately straight tapers across a half 
wavelength of the acoustic standing wave, just as the tapered bore in the first octave 
was.  This highlights the effect of introducing bore perturbations to affect the relative 
tuning between octaves.  For instance, the bore with the fat middle will be flatter in the 
first octave than the second, while the opposite is true in the bore with the flared ends.  
Again, this is described qualitatively when using perturbation weight functions, but 
first we’ll look at how this approach compares to Nederveen’s description of a tapered 
bore. 
 

Comparison to Nederveen 
 
From Nederveen, the impedance of a bore with a straight taper can be written as  
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where )(xr  is the distance from a given point in the bore to a point beyond the end of 
the bore where the projected diameter would converge to zero, and R0 is the distance 
from the end of the air column to that point.  Note that the x=0 point is now at the 
convergence point, and all the distances are negative in this description.  The resulting 
equations predict that the length is the same for a tapered bore compared to that of a 
cylindrical bore, which indeed works out that way.  The results are identical to that of 
the sectional approach described above.  For straight tapers, Nederveen’s approach is 
fairly straightforward.  But for compound bores, the method does not lend itself to an 
easy execution. 
 

Perturbation Weight Functions 
 
Based on Benade's description, which is only qualitative in his "Fundamentals of 
Musical Acoustics" book, there are basically four things that could happen: 
 
1. A contraction of the bore at a large pressure amplitude (antinode) increases the 
"springiness" of the air at that point, which in turn induces an increase in the vibration 
frequency, and the pitch rises, 
 
2. An enlargement at a pressure antinode lowers the pitch, 
 
3. A constriction at a point of large flow (flow antinode) increases the local density of 
the air, which in turn lowers the frequency, and 
 
4. An enlargement at a flow antinode produces increases the pitch. 
 
Recall that the ends of the bore are at a flow antinode, and in the fundamental mode 
(first octave), the pressure antinode resides near the middle of the bore.  Conditions 1 
and 4 describe the case of the bore with fat, or flared ends above, in which a 
constriction in the middle or an enlargement at the ends is in effect the same thing.  In 
that case, the acoustic length was reduced relative to the physical bore length, which 
equates to an increase in pitch.  Likewise, the bore with an enlargement in the middle 
(fat middle) is the same as one with constrictions at the ends, and the result is a larger 
acoustic length and lower pitch, as described by conditions 2 and 3. 
 
As playing holes are opened, the wavelength of the air column is shortened and is 
contained in only a portion of the bore.  The pressure and flow antinodes then shift to 
different locations, which means that bore constrictions or enlargements will be acting 
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on different parts of the air column.  This means that a perturbation in a bore that was 
used to flatten a particular note, for instance, could have the effect of sharpening a 
different note.  The calculations described above can be used to compute the result, but 
they give no intuitive sense ahead of time of how a particular design change might 
affect all the notes at once. 
 
To digress for a moment, consider a scientific idea of “perturbation theory.”  Before 
computers were around, some mathematical problems were difficult or impossible to 
solve exactly, so approximations were made.  The magic ratio is an example of such an 
approximation.  These approximations were usually of simpler problems that behaved 
in a similar way as the more complex problem.  The simple problems didn’t always 
give the correct answer, but a small change in the simple problem would produce a 
small change in the answer, and the same small change in the complex problem 
produced the same small change in its outcome.  So this way, an easy problem could 
be used to find out what would happen when a small design change was made in a 
complex problem.  These small changes are called perturbations, and this approach to 
using easily-solvable equations to predict changes in unsolvable or hard-to-solve 
problems is called perturbation theory.  This is very useful in flutes, because we can 
use a simple model like a cylinder to describe the bore, and introduce small 
enlargements or constrictions as bore perturbations to predict how they will affect the 
pitch of the notes. 
 
In a cylindrical-bore flute, the pressure and flow standing waves are described by 
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where p describes the pressure variation along the bore, u describes the flow, x is the 
position along the acoustic length of the flute (including end corrections) for a 
particular note of the given wavelength, and m is 1 for the first octave, 2 for the second, 
etc.  When the absolute value of p is at a maximum, an enlargement will cause a 
lowering of the pitch, and when u is at an absolute maximum an enlargement will 
cause the pitch to go up.  These equations can be combined in the following way to 
describe those effects; 
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This equation describes what the pitch will do if an enlargement in the bore is made; a 
positive value means the pitch goes up and a negative value means the pitch goes 
down.  If a constriction is made in the bore, then a negative value yields an increase in 
pitch, and vice-versa.  Note that the value of the W function is between +1 and -1 
(friction losses at the side walls has not been considered yet, and I expect that such 
losses will scale the W function to smaller values in areas of high flow).  I chose to use 
the enlargement as the basis for the pitch change because that’s what I currently use to 
adjust the tuning of flutes.  The figure below shows the calculated perturbation weight 
functions for a cylindrical bore with six nominal finger holes (i.e., this is not for a real 
tuning—it’s just to show the concept).  As each finger hole is opened as represented by 
the tick marks, the wavelength decreases and the end points shift to the left.  The 
extension of the curve to the right beyond the left-most open hole position represents 
the combined acoustic length of the open hole and the sections below that hole, and the 
extension to the left of the sound hole represents the end correction at the sound hole.  
The second overblown mode of three notes in the second octave is shown at the top of 
the figure. 
 

 
 
Using such a set of curves constructed for a particular flute can help identify where 
certain bore enlargements might help balance tuning.  For instance, if the first 
overblown note shown in the second octave (one open hole) is flat, it could be 
sharpened by sanding open the bore by a small amount (1/64” or less can have a 
significant effect) at the highlighted area.  In the drawing, the areas under the weight 
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function curve in the dilated area are colored green if they are positive and red if they 
are negative.  The green areas mean the pitch will be raised, and the red areas 
correspond to lowered pitch, and if a curve shows equal red and green areas the pitch 
is not changed.  Now notice that that same perturbation will flatten all but the highest 
two notes in the first register at the same time, and to varying degrees.  It will also 
sharpen the two adjacent notes to a lesser degree, and will have little or no effect on 
the pitches two notes away. 
 
 

Diversion from the Simple Cylinder 
 
If the starting bore is not cylindrical, then a weight function curve can be calculated for 
the general shape of the bore.  In a segmented bore, each section has a phase shift ψ  
associated with it.  The phase shift for the bore as a function of x can obtained by 
plotting ψ  for each section along the bore, then smoothing the curve to get a 
continuous function (if the curve is not smooth, there will be discontinuities in the W 
curve).  Then the weight function curve is simply 
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The picture below shows W curves for the fundamental and the octave notes for a 
tapered bore and a bore with a dilated section near the head.  The gray dashed curve is 
the W function for the tapered bore for comparison.  Note that the center of the first-
octave W function for tapered bore moves closer to the foot.  Also, for the bore with 
the dilated section, the area of the W function near the bulge moves toward the left, 
and is much more pronounced in the second octave. 
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Estimating the Change in Pitch 
 
To calculate an estimate of how much the pitch will change based on the perturbation 
weight functions, we can revisit the magic ratio.  Recall the magic ratio was 
 

2

2

1

1

S
L

S
L

=   . 

 
We’ll now see that the weight function can be thought of a scaling factor on the 
answer the magic ratio produces for a change in the equivalent acoustic length.  
Recalling the earlier discussion on the validity of the magic ratio near the ends of the 
bore, notice that the average value of the weight function is close to +1 near the ends 
of the air column.  If the change in acoustic length of a bore dilation calculated from 
the magic ratio is multiplied by this average weight function value, then the answer 
will not change very much.  If the dilation is made at the center of the bore, the 
calculated change in acoustic length will be multiplied by an average weight function 
value of about -1, which reverses the answer that the magic ratio would predict—but 
this is actually the correct answer!  What this means is the magic ratio is valid as long 
as it is used along with the weight function. 
 
So the first step is to calculate the cross-sectional area of the bore segment in which 
the enlargement is made.  If we look at segment i, then the length is Li, the cross-
sectional area before the perturbation is Si, and after the perturbation it is Spi.  Then use 
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the magic ratio for the perturbed section ( pii SL ) and the equivalent section with 
cross section Si to calculate the un-weighted acoustic length Lui of that section so that 
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The un-weighted change in the acoustic length is 
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Next, find the average value of the weight function for that section.  This will be the 
area under the W curve for that section, divided by the length Li of that section, or 
 

∫
−

=
i

i

kx

kxi
i Wdx

L
W

1

1
  . 

 
I slipped in a little calculus,4 but if the curve is fairly straight between the kxi-1 and kxi 
points on the curve, then the average weight is 
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If the curve is not straight, you can break it up into how ever many smaller sections are 
needed to make the answer sufficiently accurate.  Again, the test of “small enough” is 
when the answer doesn’t change much when the small sections are made smaller. 
 
So then we need to multiply the un-weighted change in the acoustic length times the 
average weight of that section to get 
 

                                                           
4 If you don’t recognize the symbol in that equation, it is called an integral.  What the 
equation does is breaks up the curve in the section of bore between kxi-1 and kxi (which 
is the angular distance across section i that is kLi long in angular distance) into 
infinitely small rectangles that have a height equal to the value of W at that point and a 
width dx.  Then the area W(dx) of all the rectangles are added up, or integrated to give 
the total area under that section of the curve. 
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This is the weighted change in acoustic length for that section.  The change for all 
perturbed sections must then be computed and added up to get the total change in the 
acoustic length of the bore LΔ .  The new length is then 
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From newλ , the new pitch or frequency can be found as 
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and 
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This whole process needs to be repeated for each of the notes with their respective 
weight function curves.  One thing that quickly becomes clear is that all the notes and 
all the physical variables that are applied to the bore, finger holes, sound hole design, 
etc. are interrelated, and getting a good tuning starts becoming more of an art! 
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